If it's not what You are looking for type in the equation solver your own equation and let us solve it.
274x^2-40=0
a = 274; b = 0; c = -40;
Δ = b2-4ac
Δ = 02-4·274·(-40)
Δ = 43840
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{43840}=\sqrt{64*685}=\sqrt{64}*\sqrt{685}=8\sqrt{685}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-8\sqrt{685}}{2*274}=\frac{0-8\sqrt{685}}{548} =-\frac{8\sqrt{685}}{548} =-\frac{2\sqrt{685}}{137} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+8\sqrt{685}}{2*274}=\frac{0+8\sqrt{685}}{548} =\frac{8\sqrt{685}}{548} =\frac{2\sqrt{685}}{137} $
| 0.5x^2-14x+28=0 | | 2(x-4)=6(x+4) | | -265=-16t^2+92t | | 30°+x+2x+6°=360° | | x/7=75 | | (2x+(x+20))-4=38 | | (3x+20)-4=38 | | 75=p+-15 | | t+2=96 | | 22y-48=0 | | t+3=96 | | 33=q+14 | | 14=q+77 | | c+637=-323 | | 5^x+1+5^x-1=650 | | n+136=907 | | c-36=18 | | 8x-49x=0 | | 5=16+5x | | 4y+2y=8.48 | | t-897=-298 | | P(x)=2x+6 | | s-24=-12 | | q+166=794 | | -204=h+634 | | c-599=81 | | 930=-31m | | d+1=95 | | j+170=-729 | | v+1/4=-2/5 | | y+82=453 | | q/6=10 |